Discrete Wavelets and Multiresolution Analysis

Henk J. A. M. Heijmans

Abstract. In this paper we present an elementary discussion of the discrete
wavelet transform. A major problem is formed by the construction of an or-
thonormal wavelet basis of the Hilbert space of square integrable functions. It is
shown that the concept of a multiresolution analysis is very helpful to make such
a construction. With every multiresolution analysis one can associate a father
wavelet, the translates of which define an orthonormal system, and a mother wa-
velet which forms the basis for the discrete wavelet transform. This transform
can be associated with two filtering operations and their adjoints; in practice
these are used to get a pyramid-like decomposition of a signal. The abstract
theory is illustrated by means of two concrete examples, the sinc-wavelet and
the Meyer-wavelet.

§1 Introduction

For a long time the Fourier transform has been the most useful technique for the
frequency analysis of a signal. However, due to the fact that sinusoids have an
infinite support, such an approach has undesirable effects if one deals with signals
which are localized in time or space (speech, imagery). So there is definitely a need
for transforms which are not only localized in frequency but also in space. As an
instance of such a transform we discuss the discrete wavelet transform. This is a
mapping T : L*(R) — £2(Z?) of the form

(T )i = Fytm) = [ F@nin(o)i
R
where 1), & is of the form
Ynk(z) = a”Fp(a "z — kb),
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and where the function 9, known as the mother wavelet, satisfies
/ Y(z)dz = 0.
R

Note that as n approaches —co, the coefficients ¢p(f) = (f,¥n k) express the high-
frequency content of f in a small neighbourhood of ka™b, that is, they represent
characteristics of the signal present at a smaller and smaller scale.

The linear operator T has a bounded inverse on its range if

AlfI? < ITFI? < BISI?,

for some constants 0 < A < B < oco. If this condition holds then the set {¢n |
n,k € ZZ} is called a frame. In that case f can be reconstructed from the wavelet
coefficients (f, ¥n i); (see [4]).

In this paper we are particularly interested in the case where the ¥, x constitute
an orthonormal basis of L?(IR). Furthermore we deal exclusively with the case where
a=2and b= 1

Example 1.1. The Haar wavelet basis.
The prototype example of a wavelet transform, which we consider at several in-
stances in this paper, is given by the so-called Haar wavelet basis. Here 1 equals

1, 0<z<}
11’(-"7):{“1, 3<z<l1
0, otherwise.

Note that [p¥(z)dz = 0. The functions ¥nk, n,k € Z, given by ¢¥ni(z) =
27%4(27"z — k) define an orthonormal basis of L2(R) called the Haar basis.

¢ v

Figure 1. The Haar wavelet basis: the scaling function ¢
(left; see Section 3 for a definition) and the wavelet ¥ (right).
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Recall that the Fourier transform of f is defined as
flo = [ s

We denote by L% the functions on IR which are P-periodic and which satisfy

fOP |f(z)|?dx < co. Throughout this paper we shall always use the notion of con-
vergence of a series in the sense of “unconditional convergence”.

In Section 2 we present a definition of multiresolution analysis. This notion
underlies the description of the discrete wavelet transform and the construction of a
mother wavelet. In Section 3 we use Fourier analysis to show that we can associate
a scaling function (or father wavelet) ¢ to a given multiresolution analysis. This
scaling function is determined by a sequence of coefficients hg. In Section 4 we
formulate conditions on hy which guarantee the existence of a scaling function and
we show, again by Fourier analysis, how this scaling function can be computed.
Then, in Section 5, we compute the mother wavelet 1 which forms the basic entity
for the discrete wavelet transform. In Section 6 we show that the coeficients in the
discrete wavelet transform derive from two filtering operations and their adjoints.
Finally, in Section 7 we apply our results to two concrete examples, namely the
sinc-wavelet and the Meyer-wavelet.

§2 Multiresolution analysis

Now the question arises how one can construct an (orthonormal) wavelet basis. A
systematic way to do this is by means of a so-called multiresolution analysis. We
will introduce this concept, which is originally due to Mallat and Meyer, in our
following definition. Recall that a system {¢x | k € ZZ} is called a Riesz basis if it
is obtained from an orthonormal basis by means of a bounded invertible operator
[10].

Definition 2.1. A multiresolution analysis of L*(IR) is a sequence of closed sub-
spaces ---,V_1, Vo, V1, Va,- - such that
M1) V,CVu_1,neZ.
M2)  Use_., Va is dense in L? and (32 _ . Vi = {0}.
M3)  f(z)eVn <= f(2z) € Vo
M4) flz)eVo < flz—k) eV, forallk e ZZ.
(M5)  There exists a function g € Vo such that the collection g(- — k),
k € ZZ is a Riesz basis for Vj.

We point out that the function g in (M5) is not unique. Let P, be the orthog-
onal projection of L?(R) onto V. Then condition (M1) can be restated in terms
of P, as follows:

P,P,, =P,P,=PFP,, m<n.



52 H. J. A. M. Heijmans

Furthermore, condition (M2) means that

lim Pof=F,  lim P.f=0,
n—oo

for every f € L?(R). Finally, condition (M3) can be expressed as

Py =Dy P, Dy, (2.1)
where D, is the dilation operator given by (D, f)(z) = |a|~% f(z/a).

Example 2.2. The Haar wavelet basis

Take V, to be the space of functions in L2(IR) which are piecewise constant on the
intervals [2"k, 2™ (k + 1)). It is obvious that the conditions (M1)—(M5) are satisfied
if we take for g the characteristic function of the interval [0, 1). Notice that in this
case the functions ¢g(- — k), k € ZZ, constitute an orthonormal basis of Vp. It is easy
to check that the projection P, is given by

2" (k+1)

PN@=2" [ f@dy, s 2R 2(k+1).

27k

In this example the elements of the subspaces V;,, are only piecewise continuous,
and as a consequence the projection P, f converges to f very slowly as n — oo. To
obtain faster approximations one has to assume some additional regularity for the
functions in V;,, or in other words, for the function g. We give a formal definition.

Definition 2.3. A function f € L?(R) is said to be regular if it is continuously
differentiable and satisfies

c /
lf(I)ISﬁ_—z—z, |f(37)|$1+m2,

for some constant C > 0 and every x € R. A multiresolution analysis is said to be
regular if the function g in (M5) is regular.

Example 2.4. Higher order splines

The space Vp in the example of the Haar basis consists of 1’st order splines. In this
example we consider splines of order 7 > 1. Let Vo = {f e L*(R) | f € C™! and f
is a polynomial of degree < r on every integer interval [k, k + 1]}. If, for instance,
r =1 then Vj consists of piecewise affine functions. Defining the V,, by dilation
of V, one easily derives that (M1)-(M4) are satisfied. Let x be the characteristic
function of the interval [0, 1] and define the r-fold convolution x*™ = x * x * - - - % x.
One can show that g = x*("+1) satisfies (M5). The functions x(- — k) form an
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orthonormal basis for Vj in the case r = 0. This, however, is no longer true if r > 1.
Note that if r = 1, the function g = x*2 is given by
z, 0<z<1
g(r)={2—-x, 1<z<2
0, outside [0, 2].

Using that x(z) = x(2z) + x(2z — 1) we find by a straightforward computation that
g = x*? satisfies

9(z) = 39(20) + (22 ~ 1) + 59(22 — 2);

(see Figure 2 below).

Figure 2. The scaling function g = x*2 for
second order splines.

Similar expressions can be derived for x** if r > 1.

§3 Orthonormal basis of multiresolution analysis

In the last example we have seen that for splines of order > r the basis elements
x*+(- — k) are not orthonormal. In this section we will show, using standard
Fourier techniques, that for every multiresolution analysis {V,,} one can always find
a function ¢ € V, such that the functions ¢(- — k), k € ZZ form an orthonormal
basis. In that case ¢ will be called the scaling function or also the father wavelet of
the multiresolution analysis {V,,}.

Assume that Vp C L2(R) is such that (M4)-(M5) hold. If f € Vp then it can

be decomposed as
oS

fl@)= Y aglz—k), 3.1)

k=—o00
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where a = (ax) € #2(Z). Now we take the Fourier transform at both sides, change
summation and integration (which is allowed since the Fourier transform is a con-
tinuous operator) and arrive at

FO =35 ae™™g().

Let A; € L2, be given by Af(§) = Spo _ ake~**¢. The next lemma shows that
we can decompose the infinite sum representing f(&).

Lemma 3.1. Let a = (ax) € £2(Z) and g € L*(R). Then

Z are~*EG(8) = ( Z axe™* ) . §(6),

k=—o00 k=—o00

where convergence is taken in the L?-norm and the first factor at the right-hand-side
is interpreted as an element of L,

Proof: In the proof we use the following result twice. If f, is a sequence in L%(Q),
where €0 is a measure space , and f, — f as n — oo in the L?-norm, then there is
a subsequence {n,}, such that

fo,(¥) = f(y), p— o0, forae ye

(see [8, Thm 3.12]). We apply this to the sequence {}_ ;< axe™*%g(¢)} v and find
that there is a subsequence {N,} such that
Jim, > akeTHG(E) = Z ake#G(¢),

* |KI<N, k=—o0c

for a.e. £ € R. Now consider the term (Zlkls N, ake"*¢)G(¢) at the left hand-
side. We know that 37, v ake™™ converges to 3 g _ . ake™** in the L}, -norm.
Hence there is a subsequence {p;}; such that

[eo]
: —ik€ _ —ikg
Y a3 g
|K|SNy; k=-co
for a.e. £ € R. This proves the result. M

From this lemma we may conclude that f € V; if and only if

Fl© = 410300, (3.2)
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for some Ay € L3,. The norm of f is given by
e NIGIR™
2 R

oo (k+1)-2x
3 / A£(€)P15(6) 2

1
2 i~ Jkon

1 27 e
=5 [ WOR(Y e+ 2kmP)es,

k=—o00

where we have used that Ay is 2r-periodic. Putting

rE = (3 I5+2kmP?)? (3.3)
k=—00
we get that
. 1 [* 21 o\2
1917 = 5= | 1aserrere. (34

Lemma 3.2. Let Vo C L*(R) and g € V; be such that (M4)—(M5) hold. Then there
exist Cy,Cy > 0 such that

G <C, £€R (3.5)

The proof can be found in [7, Thm IL1, p. 27].
We define U : Vo — L?[0,2n] as the bounded linear operator which maps the
function g(- — k) to (2r)~2e~ T, or more generally

1
(UM = “\’/—2—-7;Af () (3.6)

It is obvious that U is injective. To show that U is surjective take an arbitrary
h € L?[0,27]. Then, thanks to Lemma 3.2, h/T" € L?[0,2n] and so there exists a
sequence (ax) € £2(ZZ) such that

h >,
g X

k=—o00

Then

[e ]

U(Y agl—R) == 3 oxe T = he).
k=—00

k=—o0 -

[N



56 H. J. A. M. Heijmans

Thus U defines an isomorphism. From (3.4) we conclude that U ‘is also aln isometry,
i.e., |UF|| = ||| for every f € Vo. Thus we arrive at the following result.

Lemma 3.3. U is an isometric isomorphism. )
Assume that f € Vo. Then there is a sequence (ax) € £*(Z) such that f =

> he oo 6k9(- — k). Then
UAE) = 7—12_; éw e~ T (E).

Furthermore, f(£) = 1.2 __, axe~*¢g(€). Combination of both expressions yields

that ~
_ L fOn 3.7)
unNe = oz 50) -
Note that .
Uf(-—k)=e"*Uf, (3.8)

for every f € V. Assume that ¢(- — k), k € ZZ, is an orthonormal basis Of, Vo.
Then, since U is an isometric isomorphism, U¢(- — k) is an orthonormal basis of
L2(0, 2]. Let ex € L2[0, 2] be given by

ex =Ug(-~ k) =e *U4.

Then on
(ex, 1) = /0 o~ k=DE |7 (6) 2 de,

and (ex, &) = 0xt if [UB(€)| = 1/v2r a.e. Using (3.7) we obtain that a solution is

~

given by ¢(¢) = g(¢)/T(€)-

Theorem 3.4. Let Vo C L?(R) and let g € Vp be such that (M4)-(M5) hold.
(a) If ¢ € L*(R) is defined by

9¢)
L)’

where I'(€) is given by (3.3), then the functions ¢(- — k) form an orthonormal basis
of Vp.

(b) _Ifo € L™(R) is a 2m-periodic function with |o(§)| = 1 a.e., and if § is defined
by 6(€) = o(£)$(€), then @ € V, and 6(- — k), k € Z is an orthonormal basis of Vp.

Conversely, if § € Vp is such that ||]] = 1 and the functions (- — k) are
orthogonal, then (- — k), k € ZZ, is an orthonormal basis of Vp and 8(€) = o (£)$(€)

#(&) = (3.9)
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where o € L™(R) is a 2n-periodic function with |o(£)] =1 a.e.
(¢) Let ¢ € Vp be such that the system ¢(- — k), k € Z, is orthonormal. Then

i |p(€ +2km)2 =1 ae (3.10)

k=—oc0

Proof: (a) and the first assertion in (b) follow from the arguments given above.

To prove the second assertion in (b) assume that ||8]| = 1 and (- — k) is orthogonal.
Define o = v27U#, then Uf(- — k) = (2r)~3e~* 5. Since U is an isometry we get
that ||o|| = v2x. Furthermore {¢~*'¢ | k € Z} is an orthogonal system and hence

2
/ (€T ()™ dE =0 ik £0,
0

yielding that |o(€)[? is a constant a.e. In combination with ||o| = v/27 this yields
that |o(€)| = 1 a.e. We may conclude that the family {(2r)~%e ¢ |k € Z} isan
orthonormal basis of L?[0, 2] and hence that {6(- — k) | k € ZZ} is an orthonormal
basis of Vp. Finally

~

a=\/§‘7FUo=£=i
g ¢

whence the conclusion follows.
(c) If ¢(- — k) are orthonormal, then

bmo = [ $(@Ble —mydz = 5 [ e 136 g
27 0 -
- _2.1; [ e 3 13(€ + 2km) ) de.

k=—oc0

From this, the assertion follows. H

§4 Construction of a scaling function

A crucial question is how one can find a function ¢ such that the translates ¢(- — k)
are orthonormal and such that the dilation Do lies in the linear space spanned by
these translates. We start with a lemma.

Lemma 4.1. Let g be a regular function and let the kernel K be given by K(z,y) =
. 9(z —K)g(y — k). Let Ty : L*(R) — L*(IR) be the integral operator

(Tsf)(@) = A / K(\z, ) f () dy.
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The following assertions are equivalent:
(i) limyoo |T2f — fll2 =0, for f € L*(R).
(i) [K(z,y)dy=1foraezeR.

The proof can be found in [5, Lemma 1, p. 74]; (see also [7, Lemma II.13,
p. 42]).

Assume that V,, n € 7Z, defines a regular multiresolution analysis of L*(R)
generated by the scaling function ¢, and that {¢(- — k) | k € ZZ} is an orthonormal
family. The function ¢(3-) lies in V; and hence in Vo, so we can write

HE)=VE Y hblz k), (41)

k=-—o00

where ) .
b= /R 9(Z)8( - K)ds. 42)

Since ¢ is regula.r we find that
ki = 1 L2 ) - ( - )

Taking the Fourier transform of (4.1) at both sides we get that

$(26) = H(E)(€), (4.9
where o
_ 1 —ike
H() = % k;@ hie ™ ke, (4.5)

In the previous section (cf. Theorem 3.4(c)) we have seen that
> 18+ 2km)F =1
k=—~o00
In combination with (4.4) this yields that
1= ) 1g@+2km)P = 37 [H(E+ kIS + k)l
k=—oc0 k=—o00
Since H is 27-periodic we find that

1= HEP Y 18+ 2km) + [H(E+ ) i |6(€ + 7 + 2km) 2,

k=—00 k=—o00
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and hence that
[HEPP+ |HE+ )P =1.
Restated in terms of hy this condition reads

had —
> hn-skhn_o = 6.

n=-—oo

Lemma 4.2. Under the given assumptions

H(O)._-—— Z he = 1.

lc—-—oo

59

(4.6)

(4.7)

(4.8)

This result will follow from (4. 4) if we can show that ¢(0) # 0. Actually we
show below that |¢(0)I = 1. We consider the projection operator P, on V,. Let Py
be the projection operator on V,. One easily sees that the following intertwining
dlagra,m is valid; (see (2.1)). Here D, is the dilation operator given by (D, f )z) =

la|=2% f(z/a)-

2wy 2= v,
alfo P[]
PRy == v,
In particular we have
P, = Dy PyDy-n.
Now Pof = Y po . (f, ¢(- = k))é(- — k), which yields that

Pof(z) = /R K(z,9)f (v)dy,

where -
K(z,y)= Y é(z-k)dly—k).
k=—o00

Since ¢ is regular we can show that

C

[K(z,y)| < W

(4.9)

(4.10)

(4.11)

(4.12)

for some constant C > 0. From (4.9) we conclude that P, is the integral operator
with kernel 27" K (27 ™z,2 "y). Since ¢ generates a multiresolution analysis of
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L?(R) we conclude from (M2) that P.f — fasn — —o© with respect to the
strong operator topology. Applying Lemma 4.1 we get that JrK(,ydy =1 for

a.e. r, that is,

S oe-8) [Bu-Ra=30) 3 sa-k =1

k=—00 k=—o00
Integrating this expression over [0,1] we find that
BO)F =1. (4.13)

Now, by substituting £ = 0 in (4.4) the result stated in Lemma 4.2 follows.
Remark. 4.3. From H(r) = 0 it follows that 3 g __ (~1)*hx =0, that is

—00

[oe] o0 1
}: hok = Z hok+1 = ok

k=—o00 k=—o00

If |hi| decreases fast enough, in particular, if kg = 0 for |k| large enough, one can
show that '
H(E) = (1+e )F (),

where F(€) = Y po . fre ¢ and (fi) € £2.

In the remainder of this section we show that conditions (4.7)-(4.8) along with
some other (technical) conditions, mainly concerning regularity, yield a multireso-
lution analysis.

Theorem 4.4. Let (k) € £2(ZZ) be a sequence which satisfies

lhi| = O( k — oo, (4.14)

—
ki he=v2  and i R —2khn—21 = 8. (4.15)

Define H(€) = -5 3% _, hke ™™ and assume that
H() #0on [-3, ). (4.16)

Then the infinite product [];2.; H(27%¢) defines an L?-function. Let ¢ € L*(RR) be
the function with Fourier transform

6 =TT H@2 ™). (4.17)
k=1
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Then {¢(- — k) | k € ZZ} defines an orthonormal system. Let Vp be the subspace of
L%*(R) spanned by this system and let V;, = DanVj for n € ZZ. If ¢ is regular then
the V,, define a regular multiresolution of L?(IR).

The proof of this theorem consists of several steps. We start with a lemma due
to Daubechies [1, Lemma 3.1, p. 948].

Lemma 4.5. Let (hk) be a sequence with Y 5o hr = /2 and let H(E) =
273 0 hie . Assume that for some £ > 0 we have

> Ikl - 1KIF < oo (4.18)

k=—o0
Then [[pe_., H(27%¢) converges pointwise for every ¢ € IR, and the convergence
is uniform on compact sets.

Proof: It is easily seen that

etk 1

H() =1+V2 i hie - (———),

k=—o0
and hence

H©-1<V2 Y Ihil- [sin’e)

k=-—oco

We assume without loss of generality that € < 1 in (4.18). There is a C > 0 such
that |sing| < C|6|¢ for every 8 € R, which yields that

|H(E) — 1| < V2C D |hel - |3kEF < CIEL.

k=—o0
Substituting 2~*¢ we find that
[H(27%¢) — 1] < C'27*|¢)".

From this the convergence of the infinite product [[pe, H(27%¢) follows immedi-
ately. B

We put
He(8) = [[ H@7*9). (4.19)
k=1

Next we show that this infinite product defines an L2-function. Thereto we intro-
duce the following notation: we put

M =HEOF.
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Furthermore, we let for k > 1, M be the continuous function

0, if |¢] > 2Fx
Mi(§) = {M(%E)M(%ﬁ)"‘M(Z—kf) if |¢] < 2F.

Lemma 4.6. For every k =1,2,---
; 2m, m=20
Proof: Using that M (€) + M (€ + m) = 1 it follows immediately that
X 27 1 )
[ memsag= [ migeemide = 2nbmo
R 27

Furthermore,

im 4 1 1 1
[ aemae= [ mGomGoea

47

[ momGoemac+ [ mGomceoema
—4r 2 4 0 2 4

47 1 1 ime
= M(§§+2W)M(z§+‘n’)e df
0
4 Y 1 Y 1 imé
+ [ MGomMGoeas
1 1 1.
=/, M(§€)[M(Z§+W)+M(Z§)]Cm€df
47
= [ MGoema
0
21

= [ Mo,
27

where we have used that M(}-) is 4n-periodic in the last equality. This shows that

/ My(€)e™dE = f M (€)™ dE = 2m6mo.
R R

The same relations can be established for k > 2, and we conclude that

[ Mu@emsi = [ mi@eat = s
R R
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This concludes the proof. H

We are now ready to finish the proof of Theorem 4.4.

Proof of Theorem 4.4
Since M (£) < 1, the sequence My (£) converges as k — oo,

Moo (€) = lim Mi(€) = [] M(27°€) = |Hao (&) . (4.20)
k=1

Fatou’s lemma (8] gives

/R Meo(€) < Jim /R M (€)de = 2r, (4.21)

from which we conclude that H is an element of L?(IR). Let ¢ € L?(IR) be the
function which has H., as its Fourier transform, that is,

$(&) = ﬁ H(27%¢). (4.22)
k=1

We show that the system {¢(- — k) | k € ZZ} is orthonormal. From Parseval’s
formula we find that

— 1 o~ 1 i
[ $@8e ko= 5= [ ripePas = 5o [ e Ma©)de.
R T JR T JR
Suppose we can show that there exists an L'-function F' such that
0< Mi(§) S F(§), foréeR. (4.23)
Then, by Lebesgue’s dominated convergence theorem and Lemma 4.6 we derive that
9o = lim / Mi(©)emds = / Moo(€)e™dt,
k—oo /R R

whence the assertion follows. So it remains to establish (4.23) for some F € L} (R).
From the regularity condition (4.14) and the fact that H(0) = 1 we conclude that
H(¢) = 14 O(€) as € — 0, and hence that M (§) = 1+ O(§) for £ — 0. Since

Moo (€) = exp{)_log M(27%)},

k=1
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we find that
Moo(e) =1+ 0(&)’ £—0. (4'24)

In combination with Moo (26) = M (€) Mwo(€) = |H(£)|> Meo (€) and the assumption
(4.16) this implies that

My(€) 2c, £€ (-, 7], (4.25)

for some ¢ > 0. For €] < 2F7 we have Moo (£) = Mi(§)Moo(€/2F) and with (4.25)
this yields that

0< Mi(¢) < %Moo(s),

for |¢| < 2%r. However, My (€) = 0 for |¢| > 2F7 and therefore this inequality holds
for every £ € R. Thus (4.23) holds with F = ¢c~!M,. This shows that the ¢(- — k)
define an orthonormal system.

We now assume in addition that ¢ is regular. Let V be the vector space
spanned by the ¢(- — k) and let V;, be the spaces deriving from V; by dilation.
We must show that the V;, define a multiresolution analysis of 1;12 (R). To prove
(M1) it suffices to show that V3 C V. If f € Vo (resp. Vi) then f(&) = Af(€)¢(£)
(resp. f(&) = A f(2€)$(2€)) for some 27-periodic function Ay € L2[0, 2r]. From the
expression (4.22) for ¢ we deduce that

#(2€) = H(£)$(8),

where H is 2m-periodic and |H(£)| < 1. From these observations it follows that
Vi € V. Now let P, be the orthogonal projection on V,,. To prove (M2) we must
show that

P,.f—f and P,f—0 asn— oo,

with respect to the strong operator topology. Let K(z,y) be as in (4.11), then P,
is the integral operator with kernel 2= K (27"z,27"y). It follows with Lemma 4.1
that P,f — f as n — —c0. The kernel of P, satisfies

ca—
27"K(27 .27 ™)) | € —0m ———
2K Q27 € g

and from this inequality we easily derive that P, f — 0 as n — oo. This concludes
the proof of Theorem 4.4. H
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Example 4.7. The Haar wavelet basis
Let ho = hy = }V/2, then H(¢) = (1 +e~%)/2, and

R
HQHE) - H) = e e,

and this expression converges towards

~ 1—e% /‘ Lo
= - = =gy,
In other words, ¢ is the characteristic function of the interval [0,1]. Note that
indeed I

8(3) = 6(z) + b(z ~ 1);

(see also Figure 1). In this case we have H(¢) = e 3% cos 3£ and H(€ + 7) =
ie~ 4% sin §, yielding that |H()]2 + |H(E+m)|2 =1 (cf. (4.6)).

In the second part of Theorem 4.4 the regularity of ¢ has to be assumed explic-
itly as it did not follow automatically from the assumptions on hx. The following
result, due to Daubechies [1, p. 949] gives sufficient conditions for the regularity of
¢ in terms of the coefficients hy.

Proposition 4.8. Let H(¢) = [3(1+ e*'f)]"’ F(¢) with F(€) = Y 1o _. fre ™™ such
that the following conditions are satisfied:

> Ifel - [kl <00 for some £>0, (4.26)
k=-—o00
|F()l < 2%, ¢eR, (4.2m)
for some K € R. There is a constant C > 0 such that
o0
I [T E@ ™) < ca+[gh~N+x. (4.28)
k=1

§5 Orthonormal wavelet basis

Assume that the spaces V,, n € Z form a multiresolution analysis of L?(IR) with
¢ the scaling function. Let W, be the orthogonal complement of V,, in Vi._1, in
other words,

Vo ®W, =Voo1. (5.1)

We prove the following theorem.
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Theorem 5.1. There exists a function ¢ € Wo, called the mother wavelet, such
that {(- ~ k) | k € ZZ} forms an orthonormal basis of Wy. If ¢ is regular then 1 is
regular as well.

We use the following convention. If V is a subspace of L?(IR) then we denote

by V the subspace of L?(R) consisting of all Fourier transfom/l\s of functions inK.
From the fact that V; @ W1 = Vp we conclude that Vi @ Wi = Vg, that is, W,
is the orthogonal complement of V; in Vy. We have seen that

Vo =1{A8| A€ L3}

Vi ={A@2)4(2) | Ae L3, }.
Using that $(28) = H(€)$(&) (cf. (4.4)) we get that

Vi = {A(2)H¢ | Ae L}, ).
Let S : Vo — L2[0, 27] be the unitary operator given by

S(AP) = A.

Instead of computing A directly, we first compute S(Wl), which is the orthogonal
complement of S(V1) in L2[0, 2x]. It is obvious that

S(Vy) = {A(2)H | A € L*[0,2nr]}.

Let F € L*[0,27] be in the orthogonal complement of S(V;), then we have

27

A(2)H(E)F (€)d¢ =0,

for every 2m-periodic function A. This means that

| 4 (HEF© + e+ nFE+ mlae =0,
for every 2r-periodic function A. But this implies that
HEF(E) + HE+m)F(E+m) =0. (5.2)
So for every € € R, the vector (F(€), F(€ + 7)) is orthogonal with respect to the

unit vector (H(€), H(€ + 7)) in the vector space C2. Then there is a function o
such that

F(§) = a(e " ®*MH (¢ + ) (5.3)
F(E+m) = —a(§)e " E+MH(¢). (5.4)



Wavelets and Multiresolution Analysis 67
It follows immediately that o is w-periodic. Using (4.6) we find that
a(§) = G [FQH(E+ ) - F(E+m) H(8)). (5.5)

From (5.3) we obtain that

27 27
/ |P(€)2de = / &) 2B (€ + ) [2de
0 0
= /0 ) [|H(E)? + [ (€ +m)[2)de
-/ " ()P,

from which we conclude that the linear operator F' — a given by (5.5) defines an
isometry from L?(0, 27| into L?[0,]. This yields that

i EHIH (¢ + m)e?*E | ke 7, (5.6)
forms an orthonormal basis in S (Wl) Applying S~! we find that
e EIE(E + 1)p(€)e?, ke Z, (5.7)

defines an orthonormal basis of Wl. Let. ¥ € Wi be the function with Fourier
transform N ' . R

T(&) = V2e " ETIH(E + m)$(©),
then the family {¥(- — 2k) | k € ZZ} is an orthonormal basis of Wy. Let 1) € Wy be
given by 9 = Dy 0. Then $(2€) = 273T(¢), that is,

$(26) = e EIH(E 4+ m)$(€), (5.8)

thus {y(- — k) | k € Z} is an orthonormal basis of Wp. Using that e¢(2€) is the
Fourier transform of }3((z + 1)/2) and that

HE+me©) =277 ) (—1)FRee™5(e),
k=—o0

we get, by taking the inverse Fourier transform of (5.8), that

WEEY = VE S ) (et B)

k=—o0
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or in other words

P(z) = V2 i (1) h_k+106(2z — k). (5.9)

k=—o00

We observe that the assertion in Theorem 5.1 about the regularity of i follows
immediately from the series expansion (5.9).

In the case of the Haar wavelet (see Example 4.7) we have ho = h; = }v2.
This yields that ¥(z) = ¢(2z) — ¢(2z — 1); (see also Example 1.1).

The system {¥n | k € ZZ} with ¢, & given by

Pni(z) =27 Fp(27"z — k), (5.10)

defines an orthonormal basis of W,,. Moreover, we can prove the following important
theorem.

Theorem 5.2. The system {yn i | k,n € ZZ} is an orthonormal basis of L?(R).

This system is called the orthonormal wavelet basis and 9 is called the mother
wavelet. To prove this theorem we make the following observations. From the fact
that W,, L V,, and W,®V, = V,,_; it follows immediately that the W,, are mutually
orthogonal. Let @y be the orthogonal projection on W,. From

Py = Pop1+ Qni1 (5.11)

we derive that, for m > n,
m
Paf=Puf+ Y, Qif
j=n+1
Using that P,.f — 0 as m — oo we get that
o0
P.f= > Qif.
j=n+1

Furthermore, since P,f — f as n — —o0, we find that

3 Qnf=1 (5.12)

n=-—oo

which proves Theorem 5.2. Instead of (5.12) we can also write

é W, = L*(R). (5.13)

n=-—oo
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§6 Wavelet expansion and filtering
We can reformulate (5.6) as
¥(2) = G(9)9(©), (6.1)
where ‘ _
G(§) =" H(E + m). (6.2)
Let the coefficients g be defined by
1 o0
GlE) = — k¢
©=17% k;mgke (6.3)
or in other words _
gk = (=1)*h k41 (6.4)
By taking the inverse Fourier transform of (6.1) we get that
T o o]
B(Z)=V2 ) gd(z k). (6.5)

k=—o0

Conmsider a multiresolution analysis {V,,} with scaling function and mother wavelet
respectively given by ¢ and 9. Let as before

pni(z) =2"2g(27"z — k), (6.6)
Yo k(z) =2"2P(27 "z — k). (6.7)

The projections P, on V,, and Q,, on W, are respectively given by

Pf= S G()bns ©.8)
k=—oc0
Qnf= ), G(N¥ak (6.9)
k=—o00
where
x(f) ={fr¢nk) and di(f) = (f,¥nk)- (6.10)

Suppose that P,f is known through its coefficients . We demonstrate how one
can express the coefficients cZ'H of Pot1f and d;;'“ of Qn4+1f in terms of the cf.
From

3(35)=v2 Y hed(@— k)

k=—o00
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(cf. (4.1)) it follows easily that

Pk = Z hi—2kpn—1,.

l=—00

Let H : 2 — £2 (where £2 = ¢2(ZZ)) be the filter given by

o0
(Ha)k = Y hu-zeau.

l=—co0
We use the notational convention that
(") = ck-
Then we obtain from (6.10) and (6.11) that
¢ =He" L

With (5.7) and (6.4) we derive that

oo
Vnk= D Gi-2kbn—11.

l=—c0

Defining the filter G by
oo
(Ga)k = Z Gr—2kal,

l=—00

we derive that
=G L

From (6.11) and (6.14) we deduce that for every n € ZZ,

(én1y Pr—1,k) = h—a1,
("l’n,lv d’n—l,k) = gk-21-
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(6.11)

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)
(6.18)

If F is a filter on £2, then the adjoint filter is the mapping F* : £2 — 2 which
satisfies (Fa,b) = (a,F*b). The adjoint filters H*,G* : £2 — £2 are respectively

given by

oo
H'a)e = Y he_aa,

l=—00

(6.19)

(6.20)
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Now we can express ¢*~! in terms of ¢® and 4", We use (6.17)~ (6.18) to derive

Cz_l = (f1 ¢n—1,k>
= (Pn-1f, $n-1,k)
= (Pnf + an, ¢n—-l,k>

= (> Pbnt bnorp) + > & Ynt, $no1k)

l=—00 l=—0
(e o] o0
= D hiud+ Y geady.
l=—o00 l=—00
In other words
I =H*C" + G*d~. (6.21)

Remark. 6.1. The transition ¢*~! — ¢",d™ corresponds to a change of basis in
V,._1, namely

{bn1k | E€Z} — {fni|keZ}U{tnk| ke Z}.

The decomposition of the signal ¢c®~1 at the level n—1 into a lower resolution signal

c* and a difference (or detail) signal d forms the basis for the pyramid algorithm
described in [6].
Note that by (6.2)—(6.3),

2 X 9=60) = -H).

k=—00

From (4.6) and (4.8) we conclude that |H(r)|> = 0, hence

i gk =0. (6.22)

k=—co
Combination of (6.13), (6.16), and (6.21) yields that
(H*H + G*G)c" 1 =7,
from which we conclude that
H*H + G*G =1d. (6.23)
In terms of the Fourier transform this relation corresponds to the identity (4.6),

i.e.,

|HE)P +|H(E+m) =1
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Note that both H*H and G*G define projection operators. We compute HH*. Let
a € 2, then

©o o0

(HHa)r = Z Z hi—2khi—2mam = Gk,

m=-00 |=—o0

by (4.7). This yields that

HH* =1d. (6.24)
Similarly we find that
GG* =1d, (6.25)
and
HG"=GH* =0. (6.26)

H and G are called quadrature mirror filters in the literature.

An alternative proof of the identities (6.24)-(6.26) can be given by exploiting
the decomposition of V} into the orthogonal subspaces Vi and Wi. Let ¢,d € 22 be
arbitrary and define f € V; by

00

F=Y et Y. dithrp

k=—o0 k=—oc0

The first term at the right hand-side lies in V; whereas the second term lies in Wj.

Alternatively, we can write
o0

F=3 &dox

k=—-oc0
where ¢ = H*c+ G*d. Now

c=Hé=HH*¢+HG*d and d=Gé=GH*c+ GG*d.

Since these identities hold for arbitrary c,d € ¢2, relations (6.24)- (6.26) follow.

§7 The sinc-wavelet and the Meyer wavelet

In the present section we discuss two examples of a wavelet basis for which the
Fourier transform of both the scaling function ¢ and the wavelet function 1 has a
compact support.

The sinc-wavelet
The first example is the so-called sinc-wavelet. Recall that sinc is a well-known
function in signal analysis given by sinc(z) = sin z/z; (see Figure 3). It is easy to
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A\ Vi

\VaIRVAS

Figure 3. The scaling function ¢(z) = sinc(wz) (left) and the corres-
ponding wavelet function 1) (right).

check that the Fourier transform of sinc(rz) is the characteristic function of the
interval [, 7).
Let Vo be the subspace of L2(R) given by

Vo = {f € LA(R) | supp(f) C [~, ]},

where supp(f) is the support of the function f. To see that (M4) is satisfied, take
f € V. Since the Fourier transform of f(- — k) is given by e~ f it is clear that
f(- = k) € Vo. Let V,, be the space deriving from V; by dilation. Then

Vo = {f € L*(R) | supp(f) C [-27"x, 2 "x]}.

Therefore (M1) is trivially satisfied. The projection P, is given by

27" .
Pf@) =g [ Floe=tae,

and from this expression one easily derives that P,f — f as n — —oo. Therefore
(M2) holds as well.

We show that ¢(z) = sinc(wz) is a scaling function, that means, the collection
é(- — k), k € ZZ constitutes an orthonormal basis of Vy. To prove this observe that
the Fourier transform of z — sinc(rz) is the characteristic function of the interval
[~m,n]. This yields that

/ sine(rz)sine(r(z — k))dz = = e*ede = by,
R 2 J_,

from which the assertion follows. Considering z as a complex variable V5 becomes
the Paley-Wiener space consisting of entire functions of exponential type at most
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7 [10, p. 105ff]. For f € Vo we have

1712 =Y 1f (R,

k=—oc0

and

f@) = Y f(ksine(a(z - )

k=-o00

The latter series is called the cardinal series and plays an important role in signal
analysis where it is known as the sampling theorem.
The coefficients hi are determined by the relation

T 00
8(3) = V2 k;@ hid(z — k),
and we find that

(=D

ho, =01if k#0, hogy1 = ﬁm

1
ho = —=,
‘T V2
The 27-periodic function H(€) = 27¥ 352 hxe™**¢ can easily be found from the
relation N R
$(26) = H(£)¢(8),

and the fact that 5 is the characteristic function of the interval [—m, 7.

" A
¢ v

T T

-t 0 =« -2r -t 0 = 2=n
Figure 4. The functions $ and {I;
The Fourier transform 9 of the corresponding wavelet function 1 is given by
-~ €~
B0 =63,

where G is related to H through (6.2). Thus we find that $(£) = e—%(€/2+m) if
m < €] < 27 and 0 elsewhere; (see Figure 4). Since H = 0 in a neighbourhood of
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7 we find that G((0) = 0 for every integer r > 0. This yields that $() (0) =0 for
r > 0, and therefore

/ z"p(z)dz =0 for every r > 0.
R

In this example ¢ can be computed explicitly as the inverse Fourier transform of

~

9. A straightforward computation shows that

cos T — sin 2wz

1/)(1) - 7‘_(% _ I)
Note that ¢ is symmetric around z = %, that is ¥(z) = ¥(1 — z); (see Figure 3).

The Meyer wavelet
The second example which we discuss in this section is closely related to the previous
one. This example was first reported by Yves Meyer and for that reason it is often
called the Meyer wavelet; however, Meyer called it the Littlewood—Paley wavelet. In
fact, the main difference between this example and the sinc-wavelet discussed above
is that the Fourier transform of the Meyer wavelet has arbitrary high regularity.
We denote by D(IR) the space of all functions which have compact support and
are infinitely many times differentiable. By S(IR) we denote the class of functions
f which are infinitely many times differentiable and satisfy the estimates

IfP ()] = Oz|™), || - oo,

for all nonnegative integers p,n. It is obvious that D(R) C S(IR). Furthermore it
can be shown that R
feSR) < feSM).

The wavelet ¢ which we construct below will have the following properties:
e 1 has finite support
o % € S(R)
o Y(z)=9Y(l—1z),forzeR
o [rzPP(z)dz = 0 for every integer p > 0.
A comprehensive discussion on the Meyer wavelet can also be found in (7] and [3].
We start by choosing a function P with the following properties:
(i) PeD(R)
(if) P iseven, i.e., P(£) = P(=£)
(i) 0< P <1
(iv) P has finite support, to be precise supp(P) = (—4n/3,4n/3)
(v) P(&) =1 for £ € [-2m/3,27/3]
(vi) P(&)*+ P(2r—¢)?=1for 0 < € < 2.
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T T 1 T
—4%/3 ~2%/3 0 273 43

Figure 5. The function # = P used in the con-
struction of the Meyer wavelet.

Thus P is a function with a shape as depicted in Figure 5. At the end of this section
we shall make a short remark concerning the construction of such a function P.
It is easy to verify that for every k € ZZ,

e M P(£)? = 21 - bko. (7.1)
R
There exists a function ¢ € S(R) with Fourier transform
$=P. (7.2)
Then
[ it - bas = - [ H3e)F
R ~ o Je° “
- 3= [ HIPOPdE = .

Thus {¢(- — k) | k € ZZ} is an orthonormal system. Let Vy be the space spanned by
this system and let Va be the spaces obtained by dilation. Then Vo = {A$ | Ae
L%} and V_; = {44(3) | A € L2,}. We show that V; C V_y, that is, Vo C V_;.
Let H be the 2m-periodic function (see Figure 6).

H() = P(2%), ¢€[-mm]

Figure 6. The periodic function H.
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Then . N
#(28) = H(§)(£) (7.3)
To understand this one should observe that ¢(£) =1 for every £ in the support of
¢(2 ). With (7.3) it follows easily that ¥, c V. Using property (v) of P it is easy
to prove that
[HEP +|HE+m) =1. (7.4)

We have thus shown that the conditions of Theorem 4.4 are fulfilled. Note that
(4.14) follows from the fact that H is infinitely often differentiable. Let G(&) =
e "¢+ H(¢ + 7), then

90 =63 = uE +m3).

A straightforward computation shows that

supp(¥) = (~8/3, —27/3) U (2r/3,87/3);

(see Figure 7).

1 [}
-10m3  -8w3 2=n —4n/3  -2m3 0 2m/3 4r/;3 2r 83 10w/3

Figure 7. The Fourier transform {/;

Therefore 9 € S(IR) and thus ¥ € S(IR). We call ¢ the Meyer wavelet. From
(7.3), (7.4) and the fact that H(£) > 0 everywhere one easily derives that

Be) = e EI[35)2 - By (7.5)

Note that, just as in the example of the sinc-wavelet, the wavelet transforrm has
the effect of a band-pass filter. It is clear that e/ 21,[)(5) is even, and with this
observation it is not difficult to show that

P(z) =91 -2).

Finally, since G(®)(0) = 0 for every integer p > 0, we get that $®(0) = 0 for every
p > 0. Therefore we have

/z”;b(x)dz =0, p=>0.
R
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We conclude this example with a remark about the construction of a function P
satisfying the properties mentioned at the beginning of this section, in particular
the property that P(£)? + P(2r — £)? = 1 for every £&. Choose a C*-function
@ on [0,27] with & = 0 on [0,27/3], increasing on (27/3,47/3) .:md a=1/2on
[47/3,2n]. Furthermore let & be symmetric with respect to the point { = «, that is

a(2r —€) = g — a(8);

(see Figure 8).

o

w2

point of

symmetry

AN
w4
| I
0 213 b4 41/3 2n

Figure 8. The C*°-function a.

Define P(¢) = cosca(€) for € € [0,2r]. Then P(2m — £) = cosa(2r — &) =
cos(r/2 — a(€)) = sina(€), from which it follows immediately that P(£)? + P(2r —
£ =1
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